Asymmetric light propagation in chirped photonic crystal waveguides.

نویسندگان

  • H Kurt
  • D Yilmaz
  • A E Akosman
  • E Ozbay
چکیده

We report numerical and experimental investigations of asymmetric light propagation in a newly designed photonic structure that is formed by creating a chirped photonic crystal (PC) waveguide. The use of a non-symmetric distribution of unit cells of PC ensures the obtaining of asymmetric light propagation. Properly designing the spatial modulation of a PC waveguide inherently modifies the band structure. That in turn induces asymmetry for the light's followed path. The investigation of the transmission characteristics of this structure reveals optical diode like transmission behavior. The amount of power collected at the output of the waveguide centerline is different for the forward and backward propagation directions in the designed configuration. The advantageous properties of the proposed approach are the linear optic concept, compact configuration and compatibility with the integrated photonics. These features are expected to hold great potential for implementing practical optical rectifier-type devices.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental demonstration of wideband dispersion-compensated slow light by a chirped photonic crystal directional coupler.

We report on the fabrication and evaluation of a directional coupler consisting of two different chirped photonic crystal (PC) waveguides that can generate wideband, low dispersion slow light. The directional coupler was fabricated from a silicon-on-insulator PC slab with airhole diameter chirping. For both waveguides, we observed a group index of 60-80 near the photonic band edge and opposite ...

متن کامل

Investigation and Comparison of Light Propagation in Two Graded Photonic Crystal Structures

In this paper, we study two different Graded Index (GRIN) photonic crystal (PC) structures which are named as structure type I and type II. The PC structures are made of the square rod in an air background. To design a GRIN PC structure the lattice constant has been altered in the direction transverse to propagation. We investigated focusing effect             and waveguiding behavior of electr...

متن کامل

Experimental observation of slow light in photonic crystal coupled waveguides.

We experimentally demonstrate wideband dispersion-free slow light in chirped photonic crystal coupled waveguides (PCCW). In unchirped PCCWs, the zero group velocity can occur at an inflection point of a photonic band of even symmetric mode. The even symmetric mode is selectively excited by connecting the device with input and output waveguides through optimized branch and confluence structures....

متن کامل

Analysis and Optimization of Photonic Crystal Components for Optical Telecommunications

Photonic crystals are periodic dielectric structures where the period is of the same order of magnitude than the wavelength of light. As a result of interference, there exist band gaps for light, i.e., light of certain range of frequencies is not allowed to exist inside the photonic crystal, which can be used to control and confine light. In this thesis, photonic crystals were studied with comp...

متن کامل

Group velocity dependence of propagation losses in single-line-defect photonic crystal waveguides on GaAs membranes - Electronics Letters

Introduction: Two-dimensional (2D) photonic crystal (PC) waveguides are expected to be one of the significant platforms in future optical communication networks. To date, much effort has been devoted to the light guidance by 2D-PC line-defect waveguides that achieve a 3D optical confinement by use of a combination of the photonic bandgap and total internal reflection [1–5], and small propagatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Optics express

دوره 20 18  شماره 

صفحات  -

تاریخ انتشار 2012